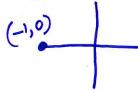

1. Find the values of the other five trig functions for the acute angle θ if $\cos \theta = \frac{5}{13}$.

2. Find the exact values of the six trig functions of θ if θ is in standard position and the terminal side of θ is in the third quadrant and bisects the quadrant.


tan 2250=

$$CSC 225^{\circ} = -12$$

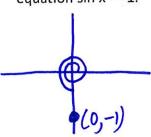
$$Sec 225^{\circ} = -12$$

$$Cut 225^{\circ} = 1$$

Use a formula for negatives to find the value of sec (-180°).

$$cos(-180^{\circ}) = cos 180^{\circ} = -1$$

 $sec(-180^{\circ}) = sec 180 = \frac{1}{-1} = -1$

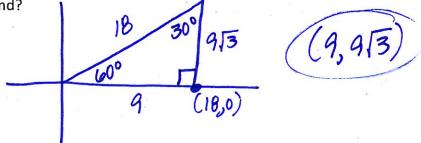

Verify the identity by transforming the left-hand side into the right-hand side.

$$sin(-x) sec(-x) = -tan(x)$$

5. Find y by referring to the graph of the trig function.

As
$$x \rightarrow (\frac{\pi}{4})^{-}$$
, csc $x \rightarrow y$

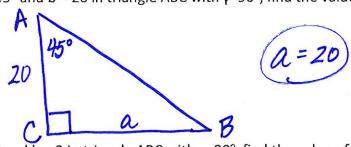
Refer to the graph of y = $\sin x$ to find the separate values of x in the interval [0, 4π] that satisfy the equation $\sin x = -1$.

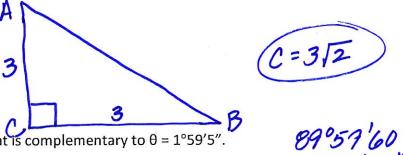

$$\sin \theta = 0.7584.$$

7. Approximate to the nearest 0.1°, all angles
$$\theta$$
 in the interval [0°, 360°) that satisfy the equation $\sin \theta = 0.7584$.

8. Approximate to the nearest 0.1°, all angles θ in the interval $[0, 2\pi)$ that satisfy the equation Yadian mode of $\sec \theta = 1.6024$.

$$\frac{6.28}{-.9} = 5.38 \times 5.4 = 0$$


Suppose a robot has a straight arm 18 inches long that can rotate about the origin in a coordinate plane. If the robot's hand is located at (18,0) and then rotates through an angle of 60°, what is the new location of the hand?


10. Find the period of the equation $y = 3 \tan x$.

- 11. Find the period of the equation $y = \cot(x + \frac{2\pi}{3})$. per = 17 = 17 = 17
- 12. Find the period of the equation $y = -3 \tan(\frac{1}{3}x \frac{\pi}{3})$.
- 13. Find the period of the equation $y = \csc 2\pi x$.

14. Given that $\alpha = 45^{\circ}$ and b = 20 in triangle ABC with $\gamma = 90^{\circ}$, find the value of a.

15. Given that a = 3 and b = 3 in triangle ABC with $\gamma = 90^{\circ}$, find the value of c.

- 16. Find the angle that is complementary to $\theta = 1^{\circ}59'5''$. $\begin{array}{r}
 89^{\circ}57'60'' \\
 -1''59'5'' \\
 \hline
 88^{\circ}0'55''
 \end{array}$
- 17. If a circular arc of the length s = 15 cm subtends the central angle $\theta = 3$ on a circle, find the radius of the circle.

$$\Delta = \pi \cdot \theta$$

$$15 = r \cdot 3$$

$$5 = r$$

18. If a tornado has a core diameter of 250 feet and maximum wind speed of 150 mi/hr (or 220 ft/sec) at the perimeter of the core, approximate the number of revolutions the core makes each minute.

$$\Delta = Y \cdot \theta$$

$$\frac{1}{350} = \theta$$

$$\frac{1 \cdot rev}{350 \cdot r} = \frac{1 \cdot 320 \cdot 4}{1 \cdot sec} = \frac{1 \cdot min}{1 \cdot min}$$

$$\frac{1 \cdot rev}{350 \cdot r} = \frac{1 \cdot 320 \cdot 4}{1 \cdot sec} = \frac{1 \cdot min}{1 \cdot sec}$$

$$\frac{1 \cdot rev}{1 \cdot sec} = \frac{1 \cdot sec}{1 \cdot min} = \frac{1 \cdot sec}{1 \cdot sec} = \frac{1 \cdot$$

5. *** *