Chapter 2: Tasks #1-6 (IC)

Name: Period: _____

Task #1:

Victoria is having trouble factoring special-case polynomials. Point out the errors she has made correct the mistakes.

a.
$$4a^2$$
-100
=(2a-10)(2a-10)
=(2a-10)²

$$4(a^2-25)$$

 $4(a-5)(a+5)$

b.
$$81m^4 + 72m^2n + 16n^2$$

= $(9m^2+8n)(9m^2+8n)$
= $(9m^2+8n)^2$

$$(9m^2+4n)(9m^2+4n)$$

c.
$$a^{10}b^4 - 16$$

= (a^5b^2-16)
= $(a^5b^2-4)(a^2b^2+4)$

d.
$$4d^2+36d+81$$

=(2d+9)(2d-9)

$$(2d+9)(2d+9)$$

 $(2d+9)^2$

Task #2:

A box with an open top is to be constructed by cutting 3-inch squares from the corners of a rectangular sheet of tin whose length is twice its width. What size sheet will produce a box having a volume of 60 in³? Illustrate.

$$(2x-6)(x-6)(3) = 60$$

 $-15(2)(3) = 60$
 $2x = 16$
 8×16

Task #3:

Solve the quadratic equation $4x^2 + x - 14 = 0$ by:

$$(4x-7)(x+2)=0$$

 $x=\frac{7}{4}(x=-2)$

$$\frac{1}{1.45}$$
 $\frac{1}{1.45}$ $\frac{1}{1.45}$ $\frac{1}{1.45}$ $\frac{1}{1.45}$ $\frac{1}{1.45}$

$$\frac{-1 \pm \sqrt{1-4(4)(-14)}}{2(4)} = \frac{-1 \pm \sqrt{1+224}}{8} = \frac{-1 \pm \sqrt{225}}{8}$$

d) Completing the Square

$$\frac{4x^{2} + x}{4} = \frac{14}{4}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{14}{4} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{14}{4} + \frac{1}{64}$$

$$x^{2} + 5 = \frac{14}{6} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{14}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{14}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{14}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{14}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{14}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{14}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{14}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{14}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{14}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64}$$

$$x^{2} + 4x + \frac{1}{64} = \frac{1}{64} + \frac{1}{64} + \frac{1}{64} = \frac{1}{64} + \frac$$

Task #4:

A baseball is thrown straight upward from 4 feet above the ground with an initial speed of 30 ft/sec. When will the ball hit the ground? Illustrate.

Task #5:

An airplane flew with the wind for 30 minutes and returned the same distance in 45 minutes. If the cruising speed of the airplane was 320 mi/hr, what was the speed of the wind?

distance with wind = distance against wind
$$(320+x)(\frac{1}{2}) = (320-x)(\frac{3}{4})$$

$$(320+x)(\frac{1}{2}) = (320-x)(\frac{3}{4})$$

Task #6: Find the value of the discriminant and the number of solutions. Verify your results by solving each quadratic equation using either the quadratic formula or completing the square.

a.
$$2y^{2}+7y=-3$$
 $2y^{2}+7y+3=0$
 $b. p^{2}-8p+16=0$
 $b^{2}-4ac$
 $b^{2}-4ac$