Date: ______Period:

Express in logarithmic form.

1.
$$4^2 = 16$$

$$\log_4 16 = 2$$

$$2. 8^{-3} = \frac{1}{512}$$

3.
$$27^{\frac{1}{3}} = 3$$

7. $\log_9(\frac{1}{81}) = i$

4.
$$(\frac{1}{3})^4 = \frac{1}{81}$$

$$\log_{\frac{1}{3}}(\frac{1}{81}) = 4$$

Solve for the unknown.

5.
$$\log_{6}1296 = p$$

$$GP = 129G$$

$$GP = 64$$

$$P = 4$$

6.
$$\log_4 \sqrt{e} = \frac{1}{2}$$
 $4\frac{1}{2} = e^{-\frac{1}{2}}$
 $4 = e^{-\frac{1}{2}}$

Determine the value of each of the following.

9.
$$\log_2 64 = x$$

$$2^{x} = 64$$

$$2^{x} = 26$$

$$x = 26$$

10.
$$\log_{16}2 = X$$

$$16 = Z$$

$$2 + X = Z$$

$$4 + Z = Z$$

Express each of the following as a single logarithm.

13. log 8 - log 2

14. $\log 2 + \log 5$

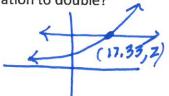
$$9i = \frac{1}{81}$$
 $9i = 9^{-2}$
 $11. \log_{1/4}64 = x$

11.
$$\log_{1/4}64 = x$$
 $\frac{1}{4}^{x} = 64$
 $\frac{1}{4}^{-1x} = \frac{1}{4}^{3}$
 $\frac{1}{4}^{-1x} = \frac{1}{4}^{3}$
 $\frac{1}{4}^{-1x} = \frac{1}{4}^{3}$
 $\frac{1}{4}^{-1x} = \frac{1}{4}^{3}$
 $\frac{1}{4}^{-1x} = \frac{1}{4}^{3}$
15. $\log_4 + 2\log_4$

8.
$$\log_9 x = -2$$

$$9^{-2} = \chi$$

$$\frac{1}{9^2} = \chi$$


$$\frac{1}{9} = \chi$$

12.	$\log_{16}\sqrt{2} =$	X
	16x=	2 立
_	244=2	之
	4x=	女
	X= ==)
16.	$\log 12 - \frac{2}{3} \log 12$	g343

2)	103	12 343 3
= lo	9 12	

Solve.

17. The local government projects that the town will grow at a constant rate of four percent per year. At this rate, how many years will it take the town's population to double?

£ 17.33 yrs