Intro to Geometry (HSS-CP.B.9)
Unit Six: Probability Fundamental Counting Principle (IC5)

Name: \qquad Key
Date: \qquad Period: \qquad

FUNDAMENTAL COUNTING PRINCIPLE

If you can choose one item from a group of M items and a second item from a group of N items, then the total number of two items choices is $\mathrm{M} \bullet \mathrm{N}$.

Ex: a) A girl has four skirts and six blouses. How many different skirt-blouse combinations can she wear?

$$
4 * 6=24
$$

b) If the girl also has three sweaters, how many skirt-blouse-sweater combinations can she wear?

$$
4 * 6 * 3=72
$$

c) If eight basketball teams are in a tournament, in how many different ways could the first, second, and third place team be decided? (No ties allowed.)

$$
8 * 7 * 6=336
$$

1. In a race with 10 horses, the first, second, and third place finishers win three different prizes. How many ways could the prizes be awarded?

$$
10 * 9 * 8=720
$$

2. How many three-digit numbers can be formed from the digits $1,2,3,4$, and 5 if repetitions of digits are:
a) not allowed
b) allowed

$$
5 * 4 * 3=60
$$

$$
5 * 5 * 5=125
$$

3. In a certain state, automobile license plates start with one letter of the alphabet, followed by five digits which can be selected from the numbers 0 through 9 . Find how many license plates are possible if:
a) repetition of numbers is allowed
b) repetition of numbers is not allowed

$$
26 * 10 * 10 * 10 * 10 * 10=2,600,000
$$

$$
26 * 10 * 9 * 8 * 7 * 6=782,240
$$

c) the first digit following the letter can't be zero and repetition is allowed

$$
26 * 9 * 10 * 10 * 10 * 10=2,340,000
$$

d) the first digit following the letter can't be zero and repetition is not allowed

$$
26 * 9 * 9 * 8 * 7 * 6=707,616
$$

4. A row of six seats in a classroom needs to be filled by selecting individuals from a group of 10 students.
a) In how many different orders could the students sit down?

$$
10 * 9 * 8 * 7 * 6 * 5=151,200
$$

b) If there are six boys and 4 girls and the students need to alternate gender when they sit down, how many different seating arrangements are there?

$$
6 * 4 * 5 * 3 * 4 * 2=2,880 \text { or } 4 * 6 * 3 * 5 * 2 * 4=2,880 \ldots \text { so } 5,760
$$

5. If a short quiz has five true/false questions, how many different ways could the quiz be filled out?

$$
2 * 2 * 2 * 2 * 2=32
$$

6. If a lock on a safe requires making a 4 digit code and the numbers 0 through 9 can be used, how many different codes are possible if:
a) all digits must be different
b) digits can be repeated

$$
10 * 9 * 8 * 7=5,040
$$

$$
10 * 10 * 10 * 10=10,000
$$

c) the code must start with a 9 and end with a 4 and digits can be repeated

$$
1 * 10 * 10 * 1=100
$$

d) the 7 key is broken and digits must all be different

$$
9 * 8 * 7 * 6=3024
$$

