Similarity and Solving
IC4

Polygons are similar if and only if:

1) All pairs of corresponding sides are _Proportional/have same scale factor. .
2) All pairs of corresponding angles are
\cong
1. Solve for the missing information, given that the two triangles in each question are SIMILAR.
a) Similarity Statement: $\triangle \mathrm{UTW} \sim \Delta \mathrm{VTX}$ $\frac{8}{12}=\frac{12}{x}$
$8 \mathrm{x}=12(12)$
$8 \mathrm{x}=144$

$$
\begin{aligned}
& 8 x=12(12) \\
& 8 x=144 \\
& x=18
\end{aligned}
$$

$$
x=
$$

$$
=
$$

$$
18
$$

b) Similarity Statement: $\triangle \mathrm{ABC} \sim \Delta \mathrm{EDC}$

$$
x=15 \quad y=12
$$

2. Use the Pythagorean Theorem to help you on these. Solving for the missing values.
a) Similarity Statement: $\triangle A C F \sim \triangle D B F$
$\frac{\text { small }}{\operatorname{large}}=\frac{3}{6}$
$\frac{3}{6}=\frac{5}{4+y}$
$3(4+y)=6(5)$
$12+3 y=30$

$$
\begin{aligned}
& 3^{2}+4^{2}=x^{2} \\
& 9+16=x^{2} \\
& 25=x^{2} \\
& x=5
\end{aligned}
$$

$$
3 y=18
$$

$$
y=6
$$

2. Use the Pythagorean Theorem to help you on these. Solving for the missing values.
b) If $\triangle A B C \sim \triangle D E F$, and right $\triangle A B C$ has sides of $A B=8, B C=15, \& A C=x$ where $A C$ is the hypotenuse. Also, right $\triangle D E F$ has sides $D E=z, E F=y, \& D F=51$. Draw a diagram and solve for x, y, and z .

$$
\begin{aligned}
& 8^{2}+15^{2}=x^{2} \\
& 64+225=x^{2}
\end{aligned}
$$

$$
\frac{17}{51}=\frac{8}{z}
$$

$$
\begin{aligned}
& \frac{17}{51}=\frac{15}{y} \\
& 17 y=51(15) \\
& 17 y=765 \\
& y=45
\end{aligned}
$$

$$
\begin{aligned}
& 17 z=51(8) \\
& 17 z=408 \\
& z=24
\end{aligned}
$$

