Probability - Day 1 IC2

What is probability? How is it calculated?

Chance of an event

$P=\underline{\text { Number of successful outcomes }}$ Total number of outcomes

1. Determine which of the following are valid values for probability.
a) $P(A)=0.4$
Valid
or Invalid
b) $P(B)=\frac{7}{3}$
Valid or Invalid
c) $P(C)=100$
d) $P(A)=\frac{4}{5}$

Valid or Invalid
2. Determine the probability of each event and then determine if the events are: (I)mpossible, (UN)likely, (EQ)ually likely, (L)ikely or (C)ertain to happen.
a) Selecting a red marble from a bag of 5 red \& 2 green marbles.

$$
\text { I or UN or EQ or } L \text { or } C
$$

c) Selecting a green marble from a bag of 5 red \& 2 green marbles.

$$
\frac{\frac{2}{7}}{\text { I or UN) or EQ or } \mathrm{L} \text { or } \mathrm{C}}
$$

b) Selecting a spade from a deck of cards.

$$
\frac{13}{52}=\frac{1}{4}
$$

I or ON or EQ or L or C
d) Getting a head when flipping a coin.

$$
\text { I or } \mathrm{UN} \text { or } \mathrm{EQ} \text { or } \mathrm{L} \text { or } \mathrm{C}
$$

3. A Bag of marbles has 4 yellow, 5 red, and 1 purple. Create a situation that would satisfy the following:
a) Something that is IMPOSSIBLE to happen.
b) Something that is EQUALLY LIKELY to happen. * choosing an orange marble
*choosing a red marble *Not choosing a red marble *choosing a yellow or purple marble
4. Describe a NEW situation that would satisfy the following: (Do not use something mentioned above.)
a) Something that is UNLIKELY to happen.
b) Something that is EQUALLY LIKELY to happen.
c) Something that is LIKELY to happen.
*Not choosing purple
*choosing a yellow or red
c) Something that is IMPOSSIBLE to happen.

(ME)	
MUTUALLY EXCLUSIVE EVENTS: Events that have (NME)	$\frac{\text { No outcomes }}{\text { (can't happen at same time) }} \text { in common }$
NON-MUTUALLY EXCLUSIVE EVENTS: Events that have	\qquad outcomes in common (could happen at same time)

5. Determine whether the event described are mutually exclusive (ME) or non-mutually exclusive (NME).
a) Rolling a 2 or a 6 on a die.
b) Rolling an even number or a 4 on a die.

MUTUALLY EXCLUSIVE NON-MUTUALLY EXCLUSIVE
MUTUALLY EXCLUSIVE NON-MUTUALLY EXCLUSIVE
c) Choosing a bird or a pet.
d) Choosing a senior student or a junior student.

MUTUALLY EXCLUSIVE NON-MUTUALLY EXCLUSIVE
e) Drawing a heart or a club.
f) Drawing an ace or a black card.

MUTUALLY EXCLUSIVE NON-MUTUALLY EXCLUSIVE

Addition Rule for Probability

Mutually Exclusive Events:

$$
P(A \text { or } B)=P(A)+P(B)
$$

Non-Mutually Exclusive Events:

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

Gets rid of the fact that some outcomes were counted twice.
5. Determine the probability. Be careful to determine whether the events are mutually exclusive when needed.
a) Given a bag of marbles with 2 green, 3 yellow and 5 red, what is the: (10 total)

$$
P(\text { Green })=\frac{\frac{2}{10}=\frac{1}{5}}{} \quad P(\text { Red })=\frac{\frac{5}{10}=\frac{1}{2}}{} \quad P(\text { green or red })=\frac{\frac{2+5}{10}=\frac{7}{10}}{}
$$

b) Given a standard deck of cards, what is the: (52 total)

$$
\begin{aligned}
& \begin{array}{l}
P(\text { Diamond })=\frac{\frac{13}{52}=\frac{1}{4}}{\frac{4+4}{52}=\frac{2}{13}} \\
P(\text { Ace or } 5)=
\end{array} \\
& P(\text { Jack })=\underline{\frac{4}{52}=\frac{1}{13}} \\
& P(\text { Numerical Card })=\frac{36}{52}=\frac{9}{13} \\
& \mathrm{P}(\text { Face Card or Black Card }) \frac{12+26-6}{=\frac{52}{26}}=\frac{8}{13} \mathrm{P}(8 \text { or a heart })=\frac{\frac{16}{52}=\frac{4}{13}}{4} \\
& \text { But } 6 \text { of face cards are black (NME) } \\
& \text { But } 18 \text { is a heart (NME) }
\end{aligned}
$$

c) Given the spinner, what is the:

8 equal outcomes

$P($ Blue or Red $)=$ 8
d) Given the spinner, what is the:

Anything but white/no
sections are both $\rightarrow \mathrm{ME}$

$$
\{0,1,3,5,6,7,8,9,11,12,15,18\}
$$

