## IC25

## Slopes if Parallel and perpendicular Lines

1. Translate the graphed line 3 units to the right.

Label your new line $a$.

2. Rotate the line $90^{\circ}$ clockwise about the point.

Label the new line $\alpha$.


Find the slope of line $b$ :
$\frac{-3}{2}$

Find the slope of line $\alpha$ : 3

## Summarize:

The slopes ofparallel lines are_equal.

The slopes of $\qquad$ lines are $\qquad$
pposite reciprocals.
Ex: $m_{\text {line a }}=\frac{1}{3}$ and $m_{\text {line b }}$
The symbol for slope is __m

The formula for slope is $\quad \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { rise }}{\text { run }}$

The symbol for the $y$-intercept is

## Using Slope to write the Equation of the Line in Slope-

 Intercept Form $\quad\left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right)$ Example: Write the equation of the line through $(0,9)$ and $(1,5)$. Step One - Find slope:$$
m=\frac{5-9}{1-0}=\frac{-4}{1}=-4
$$

$y$-intercept since $x=0$

Step Two - Use $\mathbf{y}=\mathbf{m x} \mathbf{+} \mathbf{b}$ (the slope-intercept form for the equation of a line): Using $(1,5)$

$$
\begin{aligned}
& 5=-4(1)+b \\
& 5=-4+b \\
& b=9
\end{aligned}
$$

You Try: Write the equation of the line through the points $(-3,2)$

$$
\begin{array}{lll}
\begin{array}{ll}
\text { and }(-4,5) \\
\left(x_{2}, y_{2}\right)
\end{array} & \begin{array}{l}
\text { Using }(-3,2) \\
2=-3(-3)+b
\end{array} & \left.\begin{array}{l}
\text { Using }(-4,5) \\
-4-(-3)
\end{array}\right) \\
m=\frac{5-2}{-1}=-3 & \begin{array}{l}
2=9+b \\
b=-7
\end{array} & 5=12+b \\
& y=-3 x-7
\end{array}
$$

## Writing Equations of Parallel and Perpendicular Lines

Example: Write the equation for a line parallel to one with $m=2$ and passing through the point $(3,7)$.

## same slope

$$
\begin{aligned}
7 & =2(3)+b \\
7 & =6+b \\
b & =1
\end{aligned}
$$

$$
y=2 x+1
$$

Example: Write the equation for a line perpendicular to one with $m=\frac{3}{2}$ and passing through the point $(3,5)$.
opp reciprocal slope

$$
\begin{array}{ll}
5=\frac{-2}{3}(3)+b & \\
5=-2+b & y=\frac{-2}{3} x+7 \\
b=7 & y
\end{array}
$$

Example: Write the equation for a line through the point $(-9,5)$ :

$$
\left.\begin{array}{rlrl} 
& \text { a. parallel to } y=9 x+3 & \begin{array}{rl}
\text { b. perpendicular to } y=9 x+3 \\
\text { slope }=\text { opp reciprocal }
\end{array} & 5
\end{array}\right)=\frac{-1}{9}(-9)+b .
$$

Example: Are the following lines parallel, perpendicular, ${ }^{9}$ or neither? $\underbrace{7 x-5 y=10}$ and $y=\frac{5}{7} x+4$ Solve for " $y$ " to see slope

$$
\begin{gathered}
7 x-5 y=10 \\
-5 y=-7 x+10 \\
y=\frac{7}{5} x-2
\end{gathered}
$$

$$
\frac{7}{5} \& \frac{5}{7} \text { are reciprocals, but not opposite }
$$



