IC21

Angles formed by intersection lines

When encountering lines that are intersected by a transversal, many different angles are created.

c. Alternate exterior angles:

$\angle 1 \& \angle 7$
$\angle 2 \& \angle 8$
a. Corresponding angles:

$$
\begin{array}{ll}
\angle 1 \& \angle 3 & \angle 6 \& \angle 8 \\
\angle 2 \& \angle 4 & \angle 5 \& \angle 7
\end{array}
$$

d. Same-side interior angles:

$$
\angle 6 \& \angle 3 \quad \angle 5 \& \angle 4
$$

b. Alternate interior angles:

$$
\angle 6 \& \angle 4 \quad \angle 5 \& \angle 3
$$

e. Same-side exterior angles:
$\angle 1 \& \angle 8 \quad \angle 2 \& \angle 7$

If the lines that are intersected are parallel, additional statements can be made.

a. If lines are parallel, corresponding angles are \qquad
b. If lines are parallel, alternate interior angles are \qquad \cong
c. If lines are parallel, alternate exterior angles are \qquad supplementary
e. If lines are parallel, same-side exterior angles are \qquad supplementary

1. Provide the name of the following relationships.
a) $\angle 1 \& \angle 6$ Corr \angle 's
b) $\angle 2 \& \angle 7$ Alt. ext. \angle 's
c) $\angle 16 \& \angle 14$ Vertical \angle 's
d) $\angle 14 \& \angle 11 \mathrm{~s}$-s int \angle 's
e) $\angle 1 \& \angle 7$ s-s ext \angle 's
f) $\angle 6 \& \angle 5$ Supp/linear pair
g) $\angle 15 \& \angle 10$ s-s ext $\angle ' s$
h) $\angle 1 \& \angle 2$ Supp/linear pair i $_{\text {i }} \angle 13 \& \angle 12 \ldots \mathrm{~s}$-s int \angle 's j) $\angle 16 \& \angle 9$ s-s ext \angle 's

2. Find the measure of the angle and give a reason for knowing it.
(measure)
a) $m \angle 1=110^{\circ}$
c) $m \angle 3=130^{\circ}$
e) $\mathrm{m} \angle 5=50^{\circ}$
(reason)
\qquad b) $\mathrm{m} \angle 2=$ \qquad 70°

Supp/linear pair

d) $m \angle 4=$ \qquad
(reason)

Supp/ 180°

Supp/linear pair

Alt. ext. \angle 's

3. Find the measure of the angle.
a) $m \angle 1=$ \qquad 83°
b) $\mathrm{m} \angle 2=$ \qquad 97°
c) $\mathrm{m} \angle 3=\underline{97^{\circ}}$
d) $\mathrm{m} \angle 4=$ \qquad 83°
e) $m \angle 5=$ \qquad 83°
f) $\mathrm{m} \angle 6=$ \qquad 97°
\qquad
\qquad
m \qquad f) $m \angle 6$ -

\qquad

