IC 19

Angle Pairs

Pairs of Angles	Definition	Sketch
Vertical Angles	Non-adjacent angles formed by the intersection of 2 lines.	3 2 1 4 2 2 4 2 4 2 4 2 4 3 4 4 4 4 4 4 4 4 4 4
Linear Pair	2 angles that are adjacent and sum to 180° (form a line)	2 1 21 and ∠2

Pairs of Angles	Definition	Sketch
Supplementary Angles	2 or more angles that sum to 180° (they don't have to be adjacent)	$ \begin{array}{c} 30^{\circ} \\ 4 \\ 23 + 24 = 180^{\circ} \end{array} $

Pairs of Angles	Definition	Sketch
Complementary Angles	2 or more angles that sum to 90° (they don't have to be adjacent)	30° 4 $23 + 24 = 90^{\circ}$

Pairs of Angles	Definition	Sketch
Transversal	A line that passes through two lines in the same plane.	← transversal

Example Problems:

1. Solve the following.

b)
$$x = 44^\circ$$

$$y = 67^{\circ}$$
 b) $x = 44^{\circ}$ $y = 53^{\circ}$ c) $x = 21^{\circ}$

c)
$$x = 21^\circ$$

$$y = 90^{\circ}$$

$$x + 67 = 180$$

$$x = 113^{\circ}$$

$$y + 127 = 180$$

$$y = 53^{\circ}$$

$$5x - 15 = 90$$

$$5x = 105$$

$$x = 21^{\circ}$$

$$3x - 5 = 127$$

$$3x = 132$$

$$x = 44^{\circ}$$

- 180°
 7. If $\angle A$ and $\angle B$ are supplements and m $\angle A$ = 150°, what is m $\angle B$? 30° 180 - 150
- 8. If $\angle A$ and $\angle B$ are complements and $m\angle A = 27^{\circ}$, what is $m\angle B$? 63° 90 - 27
- 9. If $\angle A$ and $\angle B$ are vertical angles and m $\angle A$ = 36°, what is m $\angle B$?

180°

10. If $\angle A$ and $\angle B$ are a linear pair and $m\angle A = 2x + 8$ and $m\angle B = 3x + 2$, what is the value of x? $x = 34^{\circ}$

$$2x + 8 + 3x + 2 = 180$$

 $5x + 10 = 180$
 $5x = 170$
 $x = 34$

11. If $\angle A$ and $\angle B$ are vertical angles and m $\angle A$ = 7x -5 and $m\angle B = 4x + 10$, what is the value of x? $x = 5^{\circ}$

$$7x - 5 = 4x + 10$$

 $3x = 15$
 $x = 5$