Science class, you are studying bacterial growth. You begin by placing a single bacterium in a petri dish. The number of bacterial triples every day.

1. Complete the table of values below.

Time	Number of bacteria
Days	Bacteria
0	1
1	3
2	9
3	27
4	81
5	243
6	729
7	2187
8	6561
9	19.683
10	59 049

2. Write an equation to model the number of bacteria over time.

$$Y=3^{\times}$$

 $X = time (days)$
 $Y = \# of bacteria$

3. Graph the function below.

time (days)

4. What is the y-intercept of the graph? Describe what this means in terms of the problem situation. Is this realistic in this problem situation? \forall -in+(0,1)

Westarte I bacterium Yes; realistic

5. What is the x-intercept of the graph? Describe what this means in terms of the problem situation. Is this realistic in this problem situation? No x-intercept

There will never be 0 bacteria No; Not realistic ble b4 we added I bacterium, there was zero.

Chapter 5: Exploration-Logs, Functions & Inverses (IC)

Date: ______ Period: _____

Answer the following questions for the function $f(x) = 3^x$.

1. Determine an equation for the inverse of f(x) using logs.

gs.
$$y = 3^{x}$$

 $x = 3^{y}$
 $y = \log_{3} x$ or $f^{-1}(x) = \log_{3} x$

2. Perform a change-of-base conversion to allow you to enter the inverse function into your calculator.

$$f^{-1}(x) = \frac{\log x}{\log 3}$$

3. Create a graph of f(x), $f^{-1}(x)$, and the line y = x.

4. What is the y-intercept of f(x)? What is the x-intercept of $f^{-1}(x)$?

Y-intercept of
$$f(x) \neq (0,1)$$

X-intercept of $f^{-1}(x) = (1,0)$

5. Is this consistent with what you know about inverses? Explain.

yes; the $x \in Y$ values between a function f its inverse switch, so if pt. (0,1) is on f(x), then pt. (1,0) should be on $f^{-1}(x)$.