*AAT (IC/HW)-Days 1-2

Chapter 8: 8-3 Vectors

Period:

Find a + b, a - b, 4a + 5b, 4a - 5b, and ||a||.

$$a-b=(1,-7)$$

$$\|a\| = \sqrt{2^2 + (-3)^2} = \sqrt{13}$$

4a+5b=4i+8ig+151-25j

$$\sqrt{53} \qquad ||a|| = \sqrt{5}$$

$$||\alpha|| = \sqrt{1^2 + 2^2} = \sqrt{5}$$

Sketch vectors corresponding to a, b, a+b, 2a, and -3b.

Find the magnitude of the vector a and the smallest positive angle θ from the positive x-axis to the vector

OP that corresponds to a.

The vectors a and b represent two forces acting at the same point, and $\boldsymbol{\theta}$ is the smallest positive angle between a and b. Approximate the magnitude of the resultant force.

9.
$$||a|| = 40 \text{ lb}$$
, $||b|| = 70 \text{ lb}$, $\theta = 45^{\circ}$

10.
$$||a|| = 2.0 \text{ lb}, ||b|| = 8.0 \text{ lb}, \theta = 120^{\circ}$$

$$||a+b|| = \sqrt{2^2 + 8^2 - 2(2)(8)} \cos 60^{\circ}$$

 $= 7.216.$

The magnitudes and directions of two forces acting at a point P are given in (a) and (b). Approximate the magnitude and direction of the resultant vector.

$$\frac{3in d}{60} = \frac{\sin 70}{89}$$

$$\frac{\sin x}{2}$$

$$-6x - 366^{\circ}W$$

$$\frac{\sin x}{2}$$

$$-35^{\circ} = 24^{\circ}$$

$$0 = 1$$

$$\frac{2}{3 \approx 19^{\circ}}$$
 $3 \approx 19^{\circ}$
 5.8
 $3 \approx 19^{\circ}$

Approximate the horizontal and vertical components of the vector that is described.

13. A quarterback releases a football with a speed of 50 ft/sec at an angle of 35° with the horizontal.

$$a_1 = 50 \cos 35^{\circ}$$
 $a_2 = 50 \sin 35$
= 40.96 = 28.68

14. A child pulls a sled through the snow by exerting a force of 20 pounds at an angle of 40° with the

Find a unit vector that has (a) the same direction as the vector a and (b) the opposite direction of the vector a.

$$(a) = \frac{7 - 8}{17}$$

$$(b) \in 3$$

$$(a) = \frac{2}{\sqrt{29}} - \frac{5}{\sqrt{29}}$$

- 17. Find a vector that has the same direction as <-6, 3> and
- (a) twice the magnitude

(b) one-half the magnitude
$$\frac{1}{2}(2-4,3) = (2-3,3/2)$$

Unit Yector Ilall .a

18. Find a vector of magnitude 6 that has the opposite direction of a = 4i - 7j.

19. If forces F_1 , F_2 , ... F_n act at a point P, the net (or resultant) force F is the sum $F_1 + F_2 + ... + F_n$. If F = 0, the forces are said are said to be in equilibrium. The given forces act at the origin O of an xy-plane.

- (a) Find the net force F.
- (b) Find an additional force G such that equilibrium occurs.

X6

$$F_1 = <-3, -1>, F_2 = <0, -3>, F_3 = <3, 4>$$

(a) net force =
$$F_1 + F_2 + F_3 = (20,0)$$

(b) No additional force is needed since system is in equilibrium.

20. An airplane pilot wishes to maintain a true course in the direction of 250° with a ground speed of 400 mi/hr when the wind is blowing directly north at 50 mi/hr. Approximate the required airspeed and compass heading.

$$||p|| = \sqrt{400^2 + 50^2 - 2(400)(50)}$$
Cas 110°
 $2420 \text{ mi/hr}.$ $A = 180 + 63$

$$\frac{\sin 4}{50} = \frac{\sin 110}{420}$$

$$d = 6.42; B = 70-6.42$$

$$= 63.58^{\circ}$$

21. An inplane is flying in the direction 20° with an airspeed of 300 mi/hr. Its ground speed and true course are including in the direction and speed of the wind.

$$\frac{Sind}{300} = \frac{Sin 10}{75}$$
 $\theta = 44^{\circ} + 30$
 $d = 44^{\circ}$

22. The current in a river flows directly from the west at a rate of 1.5 ft/sec. A person who rows a boat at a rate of 4 ft/sec in still water wishes to row directly north across the river. Approximate, to the nearest degree, the direction in which the person should row.

$$||a+b|| = \sqrt{4^2 - 1.5^2}$$

$$\frac{\cos \theta = 1.5^{2} - 4^{2} - 3.7^{2}}{(-2.4.3.7)}$$

23. For a motorboat moving at a speed of 30 mi/hr to travel directly north across a river, it must aim at a point that has the bearing N15°E. If the current is flowing directly west, approximate the rate at which it flows.

$$Sin 75 = \frac{\vec{a} + \vec{b}}{30}$$

$$\vec{a} + \vec{b} = 28.98$$

$$\frac{\sin 75}{28.98} = \frac{\sin 15}{v}$$

X77.76 or 8 mi/hr