*AAT (IC/HW)-Days 1 & 2

Chapter 6: 6-7 Applied Problems

	16.
Name	nly
Date:	Period:

Given the indicated parts of triangle ABC with γ = 90°, find the exact values of the remaining parts.

1.
$$\alpha = 30^{\circ}$$
, $b = 20$

2.
$$\beta = 45^{\circ}$$
, $c = 30$

3.
$$a = 5$$
, $b = 5$

4.
$$b = 5\sqrt{3}$$
, $c = 10\sqrt{3}$

Given the indicated parts of triangle ABC with $\gamma = 90^{\circ}$, approximate the remaining parts.

5.
$$\alpha = 37^{\circ}$$
, $b = 24$ tan $37^{\circ} = \frac{\alpha}{24}$

6.
$$\beta = 71^{\circ}51'$$
, $b = 240.0$

$$COS = \frac{2.1}{5.8}$$

$$O = \frac{2.1}{5.8}$$

$$O = \frac{2.1}{5.8}$$

$$\frac{\sin \omega - \frac{1}{5.8}}{a = 5.8 \sin \omega}$$

Given the indicated parts of triangle ABC with $\gamma = 90^{\circ}$, express the third part in terms of the first two.

10.
$$\beta$$
, b; a

$$\cot \beta = \frac{a}{b}$$

$$a = b \cot \beta$$

11.
$$\alpha$$
, a; c

$$CSCA = \frac{c}{a}$$

$$C = a CSCA$$

12. a, c; b
$$a^{2}+b^{2}=c^{2}$$

$$b^{2}=c^{2}a^{2}$$

$$b=\sqrt{c^{2}-a^{2}}$$

$$a$$

13. A person flying a kite holds the string 4 feet above ground level. The string of the kite is taut and makes an angle of 60° with the horizontal. Approximate the height of the kite above level ground if 500 feet of string is payed out.

14. A pilot, flying at an altitude of 5000 feet, wishes to approach the numbers on a runway at an angle of 10°. Approximate, to the nearest 100 feet, the distance from the airplane to the numbers at the beginning of the descent.

Sin
$$10^{\circ} = \frac{5000}{X}$$

 $X = 5000/ \sin 10^{\circ}$
 $X \approx 28,800 \text{ ft.}$

15. A guy wire is attached to the top of a radio antenna and to a point on horizontal ground that is 40.0 meters from the base of the antenna. if the wire makes an angle of 58°20' with the ground, approximate the length of the wire.

$$\cos 5820' = \frac{40}{x}$$

$$x = 40/\cos 5820'$$

$$x \approx 76.2m.$$

16. A rocket is fired at sea level and climbs at a constant angle of 75° through a distance of 10,000 feet. Approximate its altitude to the nearest foot.

Sin
$$75 = \frac{x}{10,000}$$

 $x = 10,000 (sin 75°)$
 $x = 9659 ft.$

17. An airplane takes off at a 10° angle and travels at the rate of 250 ft/sec. Approximately how long does it take the airplane to reach an altitude of 15,000 feet?

18. A rectangular box has dimensions 8" x 6" x 4". Approximate, to the nearest tenth of a degree, the angle θ formed by a diagonal of the base and the diagonal of the box.

diagonal of base = $\sqrt{8^2+6^2}$

$$\tan \theta = \frac{4}{10}$$

$$\theta = \tan^{-1} \left(\frac{4}{10} \right)$$

$$\theta \approx (21.8^{\circ})$$