*AAT (IC/HW)-Day 1

Chapter 5: 5-1 Exponential Functions

Name	Key
Date:	Period:

Solve the equation.

1.
$$7^{x+6} = 7^{3x-4}$$

2.
$$3^{2x+3} = 3^{(x^2)}$$

 $2x+3 = x^2$
 $0 = x^2 - 2x - 3$

3.
$$2^{-100x} = (0.5)^{x-4}$$

$$a^{-1(100x)} = (\frac{1}{2})^{X-4}$$

$$2.3^{2.75} = 3(x)$$

$$2 \times +3 = x^{2}$$

$$0 = x^{2} - 2x - 3$$

$$0 = (x - 3)(x + 1)$$

$$3.2^{-100x} = (0.5)^{x-4}$$

$$3.2^{-100x} = (0.5)^{x-4}$$

$$3.2^{-100x} = (0.5)^{x-4}$$

$$4.4^{x-3} = 8^{4x}$$

$$4.4^{x-3} = 8^{x}$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2) |$$

$$| (2$$

4.
$$4^{x-3} = 8^{4-x}$$

$$(2^{2})^{\times 3} = (2^{3})^{-1/2}$$

$$2^{2\times -6} = 2^{12-3\times}$$

$$x = x - 4$$

 $x = -4$
 $x = -4$
 $x = \frac{18}{5}$

5.
$$4^x \cdot (\frac{1}{2})^{3-2x} = 8 \cdot (2^x)^2$$

$$2^{2\times} \cdot (2^{-1})^{3-2\times} = 2^{3} \cdot 2^{2\times}$$

$$2^{2\times} \cdot 3 + 2\times = 2^{3+2\times}$$

8. $f(x) = (\frac{2}{5})^{-x}$, $f(x) = (\frac{2}{5})^{-x}$

Sketch the graph of f.

6.
$$8^{2x} \cdot (\frac{1}{4})^{x-2} = 4^{-x} \cdot (\frac{1}{2})^{2-x}$$

$$(2^{3})^{2\times}(2^{-2})^{x-2}-(2^{2})^{-x}(2^{-1})^{2}$$

$$2^{6\times}-2^{-2\times+4}=2^{-2\times}\cdot 2^{-2+\times}$$

$$2^{6\times}-2^{\times}+4=2^{-2\times}-2^{\times}$$

$$6x-2x+4=2-2x-4$$

 $4x+4=-x-2$

9.
$$f(x) = 5(\frac{1}{2})^x + 3$$

7.
$$2^{3x-1} = \frac{1}{2}$$

10.
$$f(x) = -(\frac{1}{2})^x + 4$$

11. One hundred elk, each 1 year old, are introduced into a game preserve. The number N(t) alive after t years is predicted to be $N(t) = 100(0.9)^{t}$. Estimate the number alive after

$$N(t) = 100(0.4)^{t}$$

- 12. A drug is eliminated from the body through urine. Suppose that for an initial dose of 10 milligrams, the amount A(t) in the body thours later is given by $A(t) = 10(0.8)^t$.
- (a) Estimate the amount of the drug in the body 8 hours after the initial dose.

$$A(t) = 10(0.8)^{t}$$

 $A(8) = 10(0.8)^{8} \approx 1.68 \text{ mg}$

(b) What percentage of the drug still in the body is eliminated each hour?

$$A(t+1) = amt$$
 in body one how after $A(t)$

$$\frac{A(t+1)}{A(t)} = \frac{10(0.8)^{t+1}}{10(0.8)^{t}} = 0.8^{t+1-t} = 0.8^{t+1-t} = 0.8^{t+1-t} = 0.8^{t+1-t}$$
20°/o eliminated

13. If a savings fund pays interest at a rate of 10% per year compounded semiannually, how much money invested now will amount to \$5000 after 1 year?

$$A = 5000$$

$$5000 = P(1 + \frac{10}{2})^{2 \cdot 1}$$

$$P = \frac{5000}{(1.05)^{2}} \approx 44535.15$$

14. If a certain make of automobile is purchased for C dollars, its trade-in value V(t) at the end of t years is given by $V(t) = 0.78C(0.85)^{t-1}$. If the original cost is \$10,000, calculate, to the nearest dollar, the value after

(a) 1 year (b) 4 years (c) 7 years
$$V(t) = .78(10,000)(.85)^{t-1}$$

$$= 7800(.85)^{t-1}$$

$$V(4) = 7800(.85)^{t-1}$$